Engineering complex systems involves unifying multiple disciplines, which often operate in silos and use a wide range of incompatible tools. Engineering for the Internet of Things (IoT) demands even more interconnections. Virtual prototyping with a model-based systems engineering (MBSE) approach – which uses integrated 3D digital simulations of all systems working together – promises relief.
This “structure first” approach leaves itself wide open to conflicts among subsystems, however. “There are so many potential interactions that this approach can’t guarantee that there are no other undesirable or unacceptable properties or behaviors,” Sillitto said.
What’s more, the rise of the Internet of Things (IoT) is multiplying the challenge. “This exponentially growing web of interconnectedness is dramatically increasing the complexity, frequency, and propagation of interactions in systems,” said Troy Peterson, fellow and chief engineer at US-based consulting firm Booz Allen Hamilton, assistant director for systems engineering (SE) Transformation at INCOSE and former lead engineer at Ford Motor Company.
German appliance manufacturer Miele, a leader in developing products designed for the IoT, knows these challenges well. “Product features are increasingly the result of complex combinations of hardware and software,” said Matthias Knoke, Miele’s head of virtual product development. “Many functions that traditionally were mechanical have been superseded by mechatronic subassemblies, which augment the range of functionalities considerably. More and more disciplines must be consulted and involved concurrently. Conventional development and testing methods are no longer sufficient.”
Read the rest of this story here, on COMPASS, the 3DEXPERIENCE Magazine
Continue the conversation by joining our DELMIA Communities on SwYm. Membership is free.