How Human Task Simulation Can Identify AEC Safety Risks

Human Task Simulation

clicktotweetClick to Tweet: How Human Task Simulation
Can Identify #AEC Safety Risks

Injury from musculoskeletal disorders (MSDs)—caused by lifting heavy items, performing tasks repetitively, working in awkward body postures, etc.—plagues many industries. In fact, the Bureau of Labor Statistics reports that in 2013, 33 percent of all worker injury and illness cases were the result of MSDs.

But by factoring ergonomic solutions in at the design stage of a new building, many workplaces and facilities can dramatically minimize the potential for design-induced risks to health, personal or process safety or environmental performance.

Companies that make worker safety and wellness a core part of their practices gain more than safer, healthier workers. Research indicates that these companies also gain dramatic improvements to their bottom lines.

The reasons are plentiful. Companies that institute safety as part of their core make-up pay less in workplace compensation costs. They also find that they are better able to motivate workers when they create an environment that proves they care about workers, leading to increased productivity. This, in turn, leads to a strong reputation for the company among its workers and the industry at large, improving the potential for gaining top talent.

This focus on human safety should begin in the design of a new facility, and should be a priority at every stage in the building’s life cycle.

clicktotweetClick to Tweet: “Safety begins with facility design &
continues through the building life cycle”

First, architects must review a building’s design to evaluate potential safety issues for future occupants. Then, contractors must account for jobsite safety throughout the construction processes. Finally, commissioning agents or facility managers should review the ease of repair and accessibility of maintenance tasks to see how the design might impact workers’ safety.

Companies that are truly committed to process improvements understand that ergonomically designed work flows can have a dramatic effect on workers’ health.

Creating an integrated ergonomics plan

clicktotweetClick to Tweet: 5 elements of an ergonomic-based
#design plan #AEC #safety

There are five points to consider in creating an ergonomic-based design plan:

  • The characteristics, capabilities, expectations, limitations, experiences and needs of the people who will operate, maintain, support and use the facilities.
  • The nature of the work involved in operating, maintaining and supporting the facility.
  • The work organization in terms of, for example, team structures, responsibilities, working hours and shift schedules.
  • The equipment and technology used, including the way equipment is laid out and the elements that people need to interact.
  • The work environment in which people are expected to work, including the operating conditions, lighting, reachability, walkability and exposure to other health hazards.

Integration of these five elements leads to a more efficient workflow. But creating a solution that accounts for each of these challenges can be tricky. More firms are turning to human task simulation as an early part of their early design work.

Benefits to simulating human tasks

When AEC companies simulate human tasks, they can design better work systems, workplaces and products that improve safety across the building’s entire life cycle.

Human task simulation can ultimately:

  • Reduce risks to health, personal and process safety and the environment.
  • Reduce the likelihood of human error in production processes.
  • Improve human efficiency and productivity, thereby enhancing operational performance.
  • Improve user acceptance of new facilities.

But the benefits of human task simulation can also lead to benefits for AEC partners. These benefits include:

  • Costs reduction through more efficient design that prevents the need for expensive changes and/or rework late in the design phase.
  • Reduced need for rework or changes during or after construction.
  • Reductions in life cycle costs for operating and maintaining facilities.
  • Improvements in health, safety and environment (HSE) performance, and reduced operational HSE risk.
  • Enhanced user commitment, often resulting in faster approval cycles.

How human task simulation works

Solutions such as the DELMIA Work Safety Engineer on the 3DEXPERIENCE® platform allows users to create, simulate and validate operational tasks in a virtual environment. The 3DEXPERIENCE platform makes available a wide range of manipulation and ergonomics analysis tools that let designers explore early on how their choices can impact the end-users’ ergonomic performance.

Human task simulation allows users to define and simulate the way a worker performs tasks in the workplace and on the worksite. The DELMIA Work Safety Engineer, for example, has a lifelike figure perform predefined actions such as picking up and placing objects, walking, using a tool, or operating a device. Through these tools, designers can better prevent workplace injuries with early identification of potential ergonomics-related problems.

Through simulation, designers can better identify the best of several potential safety solutions and make an early impact on long-term worker safety.

clicktotweetClick to Tweet: How Human Task Simulation
Can Identify #AEC Safety Risks

Related Resources

Video: Optimized Construction

Video: Optimized Planning

Learn more about the Optimized Construction Industry Solution Experience for AEC