By Catherine Bolgar
When Louis Henry Sullivan said, “Form ever follows function,” he was talking about architecture of buildings. But today his 19th-century credo is cited in many other spheres where engineering and design interact, including technology and software.
The lines are blurring, though, so that in the future, engineering and design will be seamlessly integrated.
“Good designers are engineers,” says Blade Kotelly, senior lecturer at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, and vice president of design and consumer experience at Jibo Inc., which makes a social robot for the home. At the same time, customers are no longer as wowed by raw technology and they expect an easy, and aesthetic, user experience.
Design runs to the core of things,” he adds. “Large companies realize they’re being outdone by smaller companies that are putting design at the center of their thinking.”
This design-thinking approach can be hard for engineers to understand, Mr. Kotelly says: “The beginning of the design process looks like very little is happening, because the designers are trying to get their brains around the problem fully. Before that, they ask whether the problem is even a good one to solve. Then they figure out what’s going to make the solution successful, then they begin the typical design process of research, prototyping, testing, iterating.”
Modular structures or open-source components that can be swapped in or out in a modular way reduce the risk of change, so “you can iterate faster,” he says.
“It’s important to think architecturally about the system—how it breaks out at the top level and the smaller and smaller components—to be able to observe technology as the landscape is changing,” Mr. Kotelly says.
The Internet of Things is making it possible to create systems as never before. However, we’re likely to soon stop talking about the IoT as it becomes the norm.
“It’s like plastics in the 1960s,” says Dirk Knemeyer, a founder of Involution Studios, a Boston-area software design studio. “The distinction of things being plastic was super-important. A couple of decades passed, and plastic things are just things.”
In the same way, “in the future, everything that is digital and many things that are not will be in the Internet of Things,” he says.
Systems require holistic thinking. And that requires integrated teams. “Getting to a successful integrated model that puts design in an appropriate strategic place can be challenging,” Mr. Knemeyer says. “It requires overcoming the biases and preconceptions of stakeholders who are already in place and who often have a skeptical view of design and creative expression as part of business. They also have existing fiefdoms they control, and fear that order might be upset by redesign of people and processes.”
Tearing down management silos provides a new problem-solving methodology and mindset that can augment the traditional perspectives, whether financial, operational or technological.
The engineering perspective is raw capability: what is the range of possibilities technology can do,” Mr. Knemeyer says. “Design says, ‘from these technologies, here are the things that can be done specific to the needs of customers.’”
Addressing customer needs is at the core of high-impact design, or design that brings a meaningful change in increasing revenues and reducing costs, he adds.
At the same time, design thinking doesn’t just create efficiencies, but new ideas, says Mathias Kirchmer, managing director of BPM-D, a West Chester, Pennsylvania, consultancy that helps companies increase performance through cross-functional business and information-technology initiatives.
In the classic approach, a company starts mapping the processes it needs to accomplish, then optimizing so the processes will be carried out efficiently, then writing the actual software, then implementing or installing it. “It’s very inside-out driven,” Dr. Kirchmer says. “In today’s world, that’s a huge problem. First, it’s too slow. We need a faster approach. Second, the inside-out view doesn’t deliver results to drive profitable growth. It doesn’t improve the customer experience sufficiently. It’s good to be more efficient, but that doesn’t make enough of a difference for the client and move the organization to the next performance level.”
Companies compete in just 15% of their processes, he says. The rest is commodity—that is, matching competitors rather than differentiating beyond them. That high-impact 15% requires innovation enabled through design thinking.
Dr. Kirchmer sees four aspects of design thinking:
• empathy to look at high-impact processes from a customer point of view;
• transfer of ideas from unrelated fields to introduce innovation;
• storytelling to communicate the customer journey and intended innovations in a way that will resonate with all the involved teams;
• rapid prototyping to quickly get to the visual design of user interfaces and software development.
The melding of disciplines means that in the future, designers will need to be more knowledgeable about core science or core engineering. “The way science is moving is going to pull all of us into a more quantified scientific environment,” Mr. Knemeyer says.
Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.
Photos courtesy of iStock